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Abstract

An analytical approach and exact solutions for the torsional vibration of a multi-step non-uniform rod
carrying an arbitrary number of concentrated elements such as rigid disks and with classical or non-
classical boundary conditions is presented. The exact solutions for the free torsional vibration of non-
uniform rods whose variations of cross-section are described by exponential functions and power functions
are obtained. Then, the exact solutions for more general cases, non-uniform rods with arbitrary cross-
section, are derived for the first time. In order to simplify the analysis for the title problem, the fundamental
solutions and recurrence formulas are developed. The advantage of the proposed method is that the
resulting frequency equation for torsional vibration of multi-step non-uniform rods with arbitrary number
of concentrated elements can be conveniently determined from a homogeneous algebraic equation. As a
consequence, the computational time required by the proposed method can be reduced significantly as
compared with previously developed analytical procedures. A numerical example shows that the results
obtained from the proposed method are in good agreement with those determined from the finite element
method (FEM), but the proposed method takes less computational time than FEM, illustrating the present
methods are efficient, convenient and accurate.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The torsional vibration problems of structural members and machine parts carrying various
concentrated elements, such as a shaft carrying several rigid disks, are always encountered in
engineering practices. Hence, determination of natural frequencies and mode shapes of such
systems subjected to twisting moments is necessary in the design of certain structural members or
machine parts.
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The problem for determining the dynamic characteristics of a uniform twisting rod with circular
cross-section is easily solved (e.g., Refs. [1–3]). But a concentrated element attached to a uniform
rod increases the difficulty to solve the problem analytically. Although most of the approaches
presented in the literature may be extended to solve the eigenvalue problem for a uniform rod
carrying various concentrated elements, they are not easily implemented because of the
complexity of the mathematical expressions. For this reason, the total number of concentrated
elements reported in the literature (e.g., Ref. [4]) is usually less than two. Therefore, there is a need
to propose an efficient analytical method to determine the natural frequencies and mode shapes of
a twisting rod carrying an arbitrary number of concentrated elements.
Much work has been done to investigate the torsional vibration of uniform rods, however,

dynamic of non-uniform twisting rods with an arbitrary number of concentrated elements
received less attention in the past. It should be mentioned that structural members and machine
parts with variable cross-section are frequently used in engineering practices to optimize the
distributions of weight and strength. In fact, most of the twisting rods used in engineering
practices are not uniform. For example, as pointed out by Pouyet and Lataillade ([5]), in respect
of the geometry of a shaft, even if the main part of the shaft is uniform, this may not be the case
for the ends: there may be a ramp shoulder, an overflow cone or a conical shaft end. One also can
find intermediate portions with variable cross-section (e.g., a fillet) connecting two pieces of
uniform shafts. If a rod has variable cross-section, then the displacements, in general, are not
proportional to the radial distance from the axis of twist, especially, if the cross-section is not
circular, there is some warping of the cross-sectional plane associated with torsional motion. In
order to simplify the calculation it is often assumed that the shape of the cross-sectional area and
non-uniformity of the rod are such that the motion can be regarded as rotation of the cross-
sectional plane as a whole and without warping [1,6]. Under this assumption Pouyet and
Lataillade ([5]) proposed an analytical approach for determining the natural frequencies of
rotating shafts of variable cross-section. But, in their study, the general case that the distribution
of the torsional stiffness is not proportional to that of the mass polar moment of inertia was not
considered.
Literature review indicates that the authors of previous studies have generally directed their

investigation to special functions for describing the distributions of torsional stiffness and mass
polar moment of inertia of a non-uniform twisting rod in order to derive the closed-form
solutions. The existing analytical solutions (e.g., Refs. [4–6]) are limited to several types of non-
uniform rods only. It is noted that the analytical solutions for free torsional vibration of a non-
uniform rod with arbitrary distribution of torsional stiffness or mass polar moment of inertia and
carrying an arbitrary number of concentrated elements have not been obtained in the past. In this
paper, a successful attempt is made to present an efficient analytical method and exact solutions
for the torsional vibration of non-uniform columns carrying an arbitrary number of concentrated
elements. The exact solutions for the free torsional vibration of non-uniform rods whose
variations of cross-section are described by exponential functions and power functions are
obtained. Then, the exact solutions for more general cases, non-uniform rods with arbitrary cross-
section, are also derived for the first time. As a consequence, the analytical solutions previously
obtained by Blevins ([4]), Pouyet and Lataillade ([5]), Li et al. ([6]), etc. for special types of non-
uniform rods actually result as special cases of the present exact solutions for torsional vibration
of non-uniform rods with arbitrary cross-section. In order to simplify the analysis for the
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torsional vibration of multi-step non-uniform rods with an arbitrary number of concentrated
elements, the fundamental solutions and recurrence formulas are developed. The advantage of the
proposed method is that the resulting frequency equation expressed in terms of the fundamental
solutions for torsional vibration of multi-step non-uniform rods with an arbitrary number of steps
and concentrated elements can be conveniently determined from a homogeneous algebraic
equation. As a result, the computational time required by the proposed method can be reduced
significantly as compared with previously developed analytical procedures. A numerical example
shows that the results obtained from the proposed method are in good agreement with those
determined from the finite element method (FEM), but the proposed methods takes less
computational time than FEM, illustrating the present methods are efficient, convenient and
accurate.
Apart from several analytical methods (e.g., Refs. [4–7]) for analyzing limited classes of non-

uniform twisting rods, many approximate and numerical methods (e.g., Refs. [8–11]) have been
developed. In the absence of the exact solutions presented in this paper, the title problem may be
solved using approximate or numerical methods. However, the present exact solutions could
provide adequate insight into the physics of the problem and can be easily implemented. On the
other hand, the availability of the exact solutions will help in examining the accuracy of the
approximate or numerical solutions. Therefore, it is always desirable to obtain the exact solutions
to such problem.

2. Theory

A multi-step non-uniform rod carrying an arbitrary number of concentrated elements such as
rigid disks is shown in Fig. 1. The material of the rod is assumed to be elastic, homogeneous and
isotropic, the shape of the cross-sectional area and the non-uniformity of the rod are such that the
motion can be regarded as rotation of the cross-sectional plane as a whole and without warping.
Letting the number of the concentrated elements located in the ith step rod be ni; and the ni

concentrated elements be located at sections xi1;xi2;y; xini
such that 0oxi1oxi2o?oxini

oli; li
is the length of the ith step rod and the origin of co-ordinate system is set at the left end of this step
rod. Because the difference between a rod with concentrated elements and the rod without the
concentrated elements is that the twisting torque at the ijth ðj ¼ 1; 2;y; niÞ section has a jump
caused by the ijth concentrated element, in order to study the dynamic characteristics of a rod
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Fig. 1. A multi-step non-uniform rod with concentrated elements (disks). Note: The disks attached to the other step

rods (except the ith step rod) are not shown in Fig. 1.
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with concentrated elements it is necessary to understand those of the rod without concentrated
elements first.
The governing differential equation for torsional mode shape function,YiðxÞ; of the ith step rod

without concentrated element can be written as [3]

d

dx
GJiðxÞ

dYiðxÞ
dx

� �
þ o2IiðxÞYiðxÞ ¼ 0; ð1Þ

where GJiðxÞ and IiðxÞ are the torsional stiffness and mass polar moment of inertia per unit length,
respectively, o is the circular natural frequency, G is the shear modulus, JiðxÞ is the polar moment
of inertia of the cross-section of the ith step rod.
The general solution of Eq. (1) can be expressed as

YxÞ ¼ Ci1Si1ðxÞ þ Ci2Si2ðxÞ; ð2Þ

where SijðxÞ and Cij ðj ¼ 1; 2Þ are the linearly independent solutions and integral constants of
Eq. (1), respectively.
It is evident that Sij(x) (j ¼ 1; 2) are dependent on the expression of JiðxÞ since IiðxÞ; in general,

is equal to rJiðxÞ; r is the mass intensity of material. Obviously, it is difficult to derive the
analytical solution of Eq. (1) for general cases, because JiðxÞ in the equation varies with x:
However, the analytical solution may be obtained by means of reasonable selections for JiðxÞ:
Hence, the following several cases of JiðxÞ which cover many types of non-uniform structural and
mechanical members are considered in this paper.

Case 1: The distribution of polar moment of inertia of cross-section is described by a power
function

JiðxÞ ¼ aið1þ bixÞ
gi ; ð3Þ

where ai; bi and gi are constants that can be determined by use of the real values of JiðxÞ at several
control sections.
Substituting Eq. (3) into Eq. (1) results in

d2YiðxÞ

dx2
þ

gi

x
dYiðxÞ
dx

þ l2i YðxÞ ¼ 0; ð4Þ

where

x ¼ 1þ bix; l2i ¼
ro2

Gb2i
: ð5Þ

Introducing the following functional transform for Eq. (4):

YiðxÞ ¼ ðlixÞ
vi Zi; v2i ¼

1� gi

2
ð6Þ

one obtains a Bessel’s equations as follows:

d2Zi

dx2
þ
1

x
dZi

dx
þ 1�

vi

x2

� �
Zi ¼ 0: ð7Þ

The linearly independent solutions are

Si1ðxÞ ¼ ð1þ bixÞ
vi Jvi

½lið1þ bxÞ�; ð8Þ
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Si2ðxÞ ¼
ð1þ bixÞ

vi J�vi
½lið1þ bxÞ�; vi ¼ a non-integer;

ð1þ bixÞ
vi Yvi

½lið1þ bxÞ�; vi ¼ an integer:

(
ð9Þ

If gi ¼ 1; then vi ¼ 0:
If gi ¼ 2; then vi ¼ �1

2; for this case the Bessel functions in the above solutions are reduced to
trigonometrical functions and the linearly independent solutions for this case are

Si1ðxÞ ¼
1

1þ bix
sin ½lið1þ bixÞ�; ð10Þ

Si2ðxÞ ¼
1

1þ bix
cos ½lið1þ bixÞ�: ð11Þ

Case 2: The distribution of polar moment of inertia of cross-section is described by an
exponential function

JiðxÞ ¼ aie
�bix=Li ; ð12Þ

where ai; bi are constants that can be determined by use of the real values of JiðxÞ at several
control sections.
Substituting Eq. (12) into Eq. (1) one obtains

d2YiðxÞ
dx2

�
bi

Li

dYiðxÞ
dx

þ l2i YiðxÞ ¼ 0; ð13Þ

where the expression of l2i is the same as Eq. (5).
The solutions of Eq. (13) for b2i =L2i � 4l

2
i o0 are

Si1ðxÞ ¼ ebix=2Li sin
mix

Li

; ð14Þ

Si2ðxÞ ¼ ebix=2Li cos
mix

Li

; ð15Þ

where

m2i ¼
L2i
4

4l2i �
b2i
L2i

� �
: ð16Þ

If b2i =L2i � 4l
2
i X0; then YiðxÞ ¼ 0; this case corresponds to the static status of the rod.

Case 3: The distribution of the torsional stiffness or the mass polar moment of inertia is
arbitrary.
As reviewed previously, the analytical solutions for free torsional vibration of a non-uniform

rod with arbitrary distribution of torsional stiffness or mass polar moment of inertia have not
been obtained in the past. In this paper, a successful attempt is made to solve this challenging
problem. It is assumed that

YiðxÞ ¼ YiðBÞ; GJiðxÞ ¼ arbitrary function;

IiðxÞ ¼ ½GJiðxÞ��1pðBÞ; B ¼
Z

½GJiðxÞ��1 dx: ð17Þ
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or

YiðxÞ ¼ YiðBÞ; IiðxÞ ¼ arbitrary function;

GJiðxÞ ¼ I�1i ðxÞpðBÞ; B ¼
Z

½GJiðxÞ��1 dx:

It can be seen from Eq. (17) that we consider a general case here, in which the distribution of
torsional stiffness is described by an arbitrary function, and the variation of mass polar moment
of inertia is expressed as a functional relation with the torsional stiffness and vice versa.
Substituting Eq. (18) into Eq. (1) results in

d2YiðxÞ
dB2

þ o2piðBÞYiðBÞ ¼ 0: ð18Þ

It is noted that in Eq. (17) one of the expressions of GJiðxÞ and IiðxÞ is an arbitrary function, B
is a function of x; and piðBÞ is a functional expression. Hence, a solution of Eq. (18) actually
represents a class of solutions of Eq. (1). On the other hand, the use of Eq. (17) can eliminate the
derivative of the first order in the governing differential equation for free torsional vibration
of a non-uniform rod. It is easier, in general, to solve the differential equation with variable
coefficients of the second order without the derivative of the first order than to solve that with
the derivative of the first order. Thus, the introduction of the functional transformations given
in Eq. (17) can simplify the torsional vibration analysis of non-uniform rods and obtain
the closed-form solutions for such problems. Therefore, it is decided to derive the analytical
solutions of Eq. (18) here. The solution processes for several important cases are given
below:

1. piðBÞ ¼ ðai þ biBÞ
ci ð19Þ

The linearly independent solutions of Eq. (18) are

Si1ðBÞ ¼ ðai þ biBÞ
1=2Jvi

½%aiðai þ biBÞ
1=2vi �; ð20Þ

Si2ðBÞ ¼
ðai þ biBÞ

1=2J�vi
½%aiðai þ biBÞ

1=2�; vi ¼ a non-integer;

ðai þ biBÞ
1=2Yvi

½%aiðai þ biBÞ
1=2vi �; vi ¼ an integer;

(
ð21Þ

where

%ai ¼
2vio2

bij j
; vi ¼

1

ci þ 2
: ð22Þ

If ci ¼ �2; then vi ¼ N; the above solutions are not valid for this case. When ci ¼ �2;
substituting Eq. (19) into Eq. (18) leads to an Euler equation, its solutions are

Si1ðBÞ ¼ ðai þ biBÞ
1=2 sin ½*ailnðai þ biBÞ�

for 4o2 � b2i > 0

Si2ðBÞ ¼ ðai þ biBÞ
1=2cos ½*ailnðai þ biBÞ�

; ð23Þ
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or

Si1ðBÞ ¼ ðai þ biBÞ
1=2þ*ai

for 4o2 � b2i o0

Si2ðBÞ ¼ ðai þ biBÞ
1=2�*ai

; ð24Þ

or

Si1ðBÞ ¼ ðai þ biBÞ
1=2

for 4o2 � b2i ¼ 0;

Si2ðBÞ ¼ ðai þ biBÞ
1=2lnðai þ biBÞ

ð25Þ

where

*ai ¼
4o2 � b2i
�� ��1=2

2 bij j
: ð26Þ

2. piðBÞ ¼ aið1þ biBÞ
ci ð27Þ

This case is an alteration of Case 1. The solutions of Eq. (18) for this case are

Si1ðBÞ ¼ ð1þ biBÞ
1=2Jvi

½%lið1þ biBÞ
1=2vi � ð28Þ

Si2ðBÞ ¼
ð1þ biBÞ

1=2J�vi
½%lið1þ biBÞ

1=2vi �; vi ¼ a non-integer;

ð1þ biBÞ
1=2Yvi

½%lið1þ biBÞ
1=2vi �; vi ¼ an integer;

(
ð29Þ

where

%li ¼
2ovia

1=2
i

bij j
; vi ¼

1

ci þ 2
: ð30Þ

If ci ¼ �2; then vi ¼ N: The solutions for this special case are similar to those given in
Eqs. (23)–(25).

3. piðBÞ ¼ aiðB2 þ biÞ
�2; ai > 0; bi > 0: ð31Þ

The solutions of Eq. (18) for this case are

Si1ðBÞ ¼ ðB2 þ biÞ
1=2 sin x; ð32Þ

Si2ðBÞ ¼ ðB2 þ biÞ
1=2 cos x; ð33Þ

where

x ¼
aio2 þ bi

bi

� �1=2
arctan

B

b
1=2
i

: ð34Þ

4. piðBÞ ¼ aiðB2 � biÞ
�2; ai > 0; bi > 0: ð35Þ
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The solutions of Eq. (18) for this case are

Si1ðBÞ ¼ ðbi � B2Þ1=2 sin x; ð36Þ

Si2ðBÞ ¼ ðbi � B2Þ1=2 cos x; ð37Þ

where

x ¼
1

2

aio2 � b2i
bi

� �1=2
ln

b
1=2
i þ B

b
1=2
i � B

: ð38Þ

5. piðBÞ ¼ aie
biB � ci: ð39Þ

The solutions for this case are

Si1ðBÞ ¼ Jvi
aie

biB=2
� 	

ð40Þ

Si2ðBÞ ¼
J�vi

ðaie
biB=2Þ; vi ¼ a non-integer;

Yvi
ðaie

biB=2Þ; vi ¼ an integer;

(
ð41Þ

where

ai ¼
2oa

1=2
i

bij j
; vi ¼

2oc
1=2
i

bij j
: ð42Þ

If ci ¼ 0; then vi ¼ 0:
If bi ¼ ci ¼ 0; then

Si1ðBÞ ¼ sin ða1=2i oBÞ; ð43Þ

Si2ðBÞ ¼ cos ða1=2i oBÞ: ð44Þ

In order to simplify the analysis for the title problem, based on the derived linearly independent
solutions Si1ðxÞ and Si2ðxÞ presented above, two linearly independent solutions, denoted by %Si1ðxÞ
and %Si2ðxÞ; which are called the fundamental solutions in this paper, are chosen such that they
satisfy the following normalization conditions at the origin of the co-ordinate system:

%Si1ð0Þ %S0
i1ð0Þ

%Si2ð0Þ %S0
i2ð0Þ

" #
¼

1 0

0 1

" #
; ð45Þ

%Si1ðxÞ and %Si2ðxÞ can be easily constructed by

%Si1ðxÞ
%Si2ðxÞ

" #
¼

Si1½Bð0Þ� S0
i1½Bð0Þ�

Si2½Bð0Þ� S0
i2½Bð0Þ�

" #�1
Si1½BðxÞ�

Si2½BðxÞ�

" #
: ð46Þ

The primes in Eqs. (45) and (46) indicate differentiation with respect to the co-ordinate
variable x:
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The compatibility of the twisting deformation of the rod at location of the ijth concentrated
element requires that

YR
i ðxijÞ ¼ YL

i xij; ð47Þ

GJiðxijÞY0R
i ðxijÞ ¼ GJiðxijÞY0L

i ðxijÞ � o2IijYL
i ðxijÞ; ð48Þ

where the superscripts ‘‘L’’ and ‘‘R’’ represent the left side and right side of the section xij ;
respectively, Iij denotes the mass polar moment of inertia of the ijth concentrated element attached
at the section xij of the ith step rod, and the second term on the right side of Eq. (48) represents a
jump of the internal twisting moment which indicates the presence of an inertia moment caused by
the ijth concentrated element.
Using the fundamental solutions developed in this paper and Eqs. (47) and (48), one can obtain

the mode shape function of torsional vibration of the ith step rod as follows:

YiðxÞ ¼ Yið0Þ %Si1ðxÞ þY0
ið0Þ %Si2ðxÞ �

Xni

j¼1

o2IijYiðxijÞ
GJiðxijÞ

%Si2ðx � xijÞHðx � xijÞ: ð49Þ

The last term of the above equation represents the jumps of the internal twisting moment at xij

ðj ¼ 1; 2;y;niÞ:
It is necessary to point out that the mode shape function of the segment, xA½xij ;xiðjþ1Þ�; is

different from those of other segments of the ith step rod. But the Heaviside function Hðx � xijÞ ¼
0 if xoxij ; therefore, the expression of YiðxÞ given in Eq. (49), is suitable for the whole ith step
rod.
It can be seen from Eq. (49) that the main advantage of using the fundamental solutions

developed in this paper is that the mode shape functions for all segments considering the jumps of
the internal twisting moment at the sections where the concentrated elements are attached to are
easily expressed in terms of the fundamental solutions, and hence, the frequency equation is
conveniently established by using such solutions.
The twisting angle and the internal twisting moment of a cross-section at all the common

interfaces of two neighboring step rods are required to be continuous, i.e.,

Yið0Þ ¼ Yi�1ðli�1Þ; ð50Þ

Mið0Þ ¼ Mi�1ðli�1Þ: ð51Þ

If there is a concentrated element such as a rigid disk, its mass polar moment of inertia denoted
by Ii�1, attached at the left end of the ith step rod (Fig. 2), we have

Yið0Þ ¼ Yi�1ðli�1Þ; ð52Þ

Mið0Þ ¼ Mi�1ðli�1Þ � o2Ii�1Yi�1ðli�1Þ: ð53Þ

Substituting Eqs. (52) and (53) into Eq. (49), one obtains

YiðxÞ ¼Yi�1ðli�1Þ %Si1ðxÞ þ
1

GJið0Þ
½Mi�1ðli�1Þ � o2Ii�1Yi�1ðli�1Þ� %Si2ðxÞ

�
Xni

j¼1

o2IijYiðxijÞ
GJiðxijÞ

%Si2ðx � xijÞHðx � xijÞ: ð54Þ
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This is a recurrence formula. Using this formula and Y1ðxÞ which includes only one unknown
initial parameter for any type of support condition at the left end of the first step rod, one can
determine the mode shape function of the ith step rod ði ¼ 2; 3;y; nÞ which also includes the same
unknown parameter as Y1ðxÞ has.
The frequency equation for torsional vibration of a multi-step non-uniform beam carrying

various concentrated elements may be obtained based on the specified boundary conditions as
follows:
(1) Two fixed ends: The boundary conditions associated with the torsional vibration of a rod for

this case are

Y1ð0Þ ¼ 0; ð55Þ

YnðlnÞ ¼ 0: ð56Þ

Applying Eq. (55) to Eq. (54), we have

Y1ðxÞ ¼
M1ð0Þ
GJ1ð0Þ

%S12ðxÞ �
Xn1

j¼1

o2I1jY1ðx1jÞ
GJ1ðx1jÞ

%S12ðx � x1jÞHðx � x1jÞ; ð57Þ

where I1j ðj ¼ 1; 2y; n1Þ is the mass polar moment of inertia of the 1jth concentrated element
attached at the section x1j in the first step rod.
Using Y1ðxÞ and the recurrence formula, Eq. (54), we can determine Y1ðxÞ (i ¼ 2; 3;y; n1). It is

noted that all the expressions of Y1ðxÞ include the same one unknown parameter, M1ð0Þ: Using
Y1ðxÞ and the boundary condition, Eq. (56), one obtains the frequency equation as

Yn�1ðln�1Þ %Sn1ðlnÞ þ
1

GJnð0Þ
½Mn�1ðln�1Þ � o2In�1Yn�1ðln�1Þ� %Sn2ðlnÞ

�
Xnn

j¼1

o2InjYnðxnjÞ
GJnðxnjÞ

%Sn2ðln � xnjÞ ¼ 0: ð58Þ

(2) Two free ends: The boundary conditions for this case are

M1ð0Þ ¼ 0; ð59Þ

MnðlnÞ ¼ 0; i:e:; Y0
nðlnÞ ¼ 0: ð60Þ

1−iI

( )11

2

1 −−− Θ iii lI ω 

( )0iM( )11 −− ii lM

Fig. 2. The twisting moments at the neighboring region of a common interface.
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Substituting Eq. (59) into Eq. (54), one obtains

Y1ðxÞ ¼ Y1ð0Þ %S11ðxÞ �
Xn1

j¼1

o2I1jY1ðx1jÞ
GJ1ðx1jÞ

%S12ðx � x1jÞHðx � x1jÞ: ð61Þ

The unknown parameter in the above expression is Y1ð0Þ: As mentioned previously, all the
expressions ofY1ðxÞ (i ¼ 2; 3;yn) include the same one unknown parameter asY1ðxÞ has. Hence,
using one boundary condition at x ¼ ln; the frequency equation is obtained as

Yn�1ðln�1Þ %S0
n1ðlnÞ þ

1

GJnð0Þ
½Mn�1ðln�1Þ � o2In�1Yn�1ðln�1Þ� %S0

n2ðlnÞ

�
Xnn

j¼1

o2InjYnðxnjÞ
GJnðxnjÞ

%S0
n2ðln � xnjÞ ¼ 0: ð62Þ

(3) One fixed end (at x ¼ 0)–one free end (at x ¼ ln): Substituting the boundary condition at
x ¼ 0; Eq. (55), into Eq. (54), one obtains the expression of Y1ðxÞ; which has the same form as
Eq. (57). Applying the boundary condition at x ¼ ln; Eq. (60), to Y1ðxÞ; one can establish the
frequency equation which is the same as Eq. (62).
(4) Two spring ends with concentrated elements: When the left end ðx ¼ 0Þ and the right end

ðx ¼ lnÞ are spring supports with concentrated elements, the torsional stiffness and the mass polar
moments of inertia of disks at x ¼ 0 and ln are K0; I0 and Kn; In; respectively, the boundary
conditions for this case are

M1ð0Þ ¼ ðK0 � o2I0ÞY1ð0Þ; ð63Þ

Y0
nðlnÞ ¼ �

Kn � o2In

GJnðlnÞ
YnðlnÞ: ð64Þ

Substituting Eq. (63) into Eq. (54), one obtains

Y1ðxÞ ¼ ½ %S11ðxÞ þ ðK0 � o2I0Þ %S12ðxÞ�Y1ð0Þ �
Xn1

j¼1

o2I1jY1ðx1jÞ
GJ1ðx1jÞ

%S12ðx � x1jÞHðx � x1jÞ: ð65Þ

Using Y1ðxÞ and the recurrence formula, one can obtain the expression of Y1ðxÞ: Applying the
boundary condition at x ¼ ln; Eq. (64), to the expression of YnðxÞ results in the frequency
equation as

Yn�1ðln�1Þ %S0
n1ðlnÞ þ

1

GJnð0Þ
Mn�1ðln�1Þ � o2In�1Yn�1ðln�1Þ
 �

%S0
n2ðlnÞ

�
Xnn

j¼1

o2InjYnðxnjÞ
GJnðxnjÞ

%S0
n2ðln � xnjÞ þ

Kn � o2In

GJnðlnÞ

(
Yn�1ðlnÞ %Sn1ðlnÞ:

þ
1

GJnð0Þ
½Mn�1ðln�1Þ � o2In�1Yn�1ðln�1Þ� %Sn2ðlnÞ

�
Xn

j¼1

o2InjYnðxnjÞ
GJnðxnjÞ

%Sn2ðln � xnjÞ

)
¼ 0: ð66Þ

Q.S. Li / Journal of Sound and Vibration 260 (2003) 637–651 647



By the method of trial and error, one can obtain a set of natural frequencies, oj; substituting oj

into Eq. (54) the jth mode shape is determined.

3. Numerical example

The natural frequencies of torsional vibration of a five-step non-uniform rod with five rigid
disks shown in Fig. 3 will be determined to demonstrate the application of the proposed method.
The polar moment of inertia, the shear modulus, the mass intensity of the rod, the mass polar
moment of inertia of the rigid disks and other parameters are given as

G ¼ 8:3
 1010 N=m2

r ¼ 7:8
 106 kg=m3

JiðxÞ ¼ aie
�bix=li ; a1 ¼ 1:60
 10�8 m4; a2 ¼ 1:38
 10�8 m4;

a3 ¼ 1:28
 10�8 m4; a4 ¼ 1:20
 10�8 m4; a5 ¼ 1:0
 10�8 m4;

b1 ¼ 0:1; b2 ¼ 0:05; b3 ¼ 0; b4 ¼ 0:05; b5 ¼ 0:08;

li ¼ 1 m ði ¼ 1; 2; 3; 4Þ;

Ii ¼ 0:32 kgm2 ði ¼ 1; 2; 3; 4; Þ; I5 ¼ 0:16 kgm2:

The boundary conditions at x ¼ 0 and ln are given in Eqs. (55) and (64), respectively, with kn ¼ 0
for this case. The mode shape function of the first step rod,Y1ðxÞ; is given in Eq. (57). UsingY1ðxÞ
and the recurrence formula, Eq. (54), we obtain Y1ðxÞ (i ¼ 2; 3; 4; 5). Applying the boundary
condition at x ¼ ln to the expression of Y5ðxÞ; the frequency equation is established as

Y4ðl4Þ %S0
51ðl5Þ þ

1

GJ5ð0Þ
½M4ðl4Þ � o2I4Y4ðl4Þ� %S0

52ðl5Þ

�
o2I5

GJ5ðl5Þ
Y4 l4ð Þ %S51ðl5Þ þ

1

GJ5ð0Þ
½M4ðl4Þ � o2I4Y4ðl5Þ� %S51ðl4Þ

� �
¼ 0:

x

2I 3I 4I
5I

1I

y

1
2 3 4 5

m0.1 m0.1 m0.1 m0.1 m0.1

Fig. 3. A five-step non-uniform cantilever rod carrying five rigid disks.
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Solving this equation by the method of trial and error obtains a set of oj: The first three circular
natural frequencies are listed as follows:

o1 ¼ 19:2908 rad=s; o2 ¼ 57:7180 rad=s; o3 ¼ 95:5542 rad=s:

Substituting oj (j ¼ 1; 2; 3) into Eq. (54) we obtain the jth mode shape (j ¼ 1; 2; 3), which are
shown in Table 1. If all the mass polar moments of the five rigid disks are distributed to the whole
twisting rod, and the five-step rod is regarded as a one-step non-uniform rod with continuously
distributed torsional stiffness and mass polar moment of inertia, then, we have

GJðxÞ ¼ ae�bx=L; a ¼ 1:330
 103 Nm2; b ¼ 0:055;

IðxÞ ¼ ae�bx=L; a ¼ 0:413 kgm; b ¼ 0:03; L ¼ 5 m: ð67Þ

Substituting Eq. (67) into Eq. (17), one obtains

pðBÞ ¼ aa
L

ab

� �ðaþbÞ=b

B�ðaþbÞ=b: ð68Þ

The above expression is a special case of Eq.(19), then the frequency equation is

J�vð%gÞJv�1ð%gAÞ ¼ �Jvð%gÞJ�ðv�1Þð%gAÞ; ð69Þ

where

%g2 ¼
4ao2L2

af 2
; f ¼ b� b; v ¼

b
b� b

; A ¼ ef =2: ð70Þ

Solving Eq. (69) and using Eq. (70), we obtain a set of oj: The first three circular natural
frequencies are given below

o0
1 ¼ 19:2910 rad=s; o0

2 ¼ 57:7182 rad=s; o0
3 ¼ 95:5547 rad=s:

Table 1

The first three mode shapes of the five-step non-uniform cantilever rod carrying five rigid disks

X1 (x) X2 (x) X3 (x)

x (m) Proposed

method

FEM Proposed

method

FEM Proposed

method

FEM

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5 0.1426 0.1425 0.4437 0.4436 0.6907 0.6904

1.0 0.3250 0.3248 0.8123 0.8122 0.9983 0.9980

1.5 0.4454 0.4452 0.9693 0.9691 0.6913 0.6901

2.0 0.6028 0.6027 0.9545 0.9543 �0.0046 �0.0040
2.5 0.7025 0.7023 0.6946 0.6944 �0.7015 �0.7011
3.0 0.8253 0.8251 0.3228 0.3239 �0.9991 �0.9990
3.5 0.8883 0.8880 �0.1606 �0.1604 �0.6950 �0.6947
4.0 0.9694 0.9690 �0.6096 �0.6092 0.0098 0.0097

4.5 0.9771 0.9768 �0.8814 �0.8814 0.7110 0.7110

5.0 1.0000 1.0000 �1.0000 �1.0000 1.0000 1.0000
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The FEM with linear approximation of displacement is also adopted to examine the accuracy of
the proposed method. In the FEM analysis for this example, each step rod is divided into 20
elements, the first three circular natural frequencies are determined as

o00
1 ¼ 19:2909 rad=s; o00

2 ¼ 57:7181 rad=s; o00
3 ¼ 95:5544 rad=s:

The first three mode shapes obtained from the FEM are also shown in Table 1 for comparison
purposes. It is evident that the results calculated by the two methods are in good agreement.
However, it is revealed from our computation that the proposed method takes less computational
time than FEM, thus illustrating the present method is efficient, convenient and accurate. The
above calculated results also illustrate that a multi-step non-uniform rod carrying several rigid
disks may be treated as a one-step non-uniform rod with continuously distributed torsional
stiffness and mass polar moment of inertia for free vibration analysis.

4. Conclusions

An analytical approach and exact solutions for the torsional vibration of a multi-step non-
uniform rod carrying an arbitrary number of concentrated elements and with classical or non-
classical boundary conditions is proposed in this paper. The exact solutions for the free torsional
vibration of non-uniform rods whose variations of cross-section are described by exponential
functions and power functions are obtained. Then, the exact solutions for more general cases,
non-uniform rods with arbitrary cross-section, are derived for the first time. Therefore, the
analytical solutions obtained previously by Blevins [4], Pouyet and Lataillade [5], Li et al. [6], etc.
for special types of non-uniform rods actually result as special cases of the present exact solutions
for torsional vibration of non-uniform rods with arbitrary cross-section. The fundamental
solutions and recurrence formulas are developed to simplify the analysis for the title problem. The
mode shape functions of a multi-step non-uniform rod carrying various concentrated elements are
easily expressed in terms of the fundamental solutions. The main advantage of the proposed
methods is that the resulting frequency equation for torsional vibration of a multi-step non-
uniform rod carrying arbitrary number of concentrated elements and with classical or non-
classical boundary conditions is determined from a homogeneous algebraic equation with one
unknown initial parameter. As a consequence, the computational time required by the proposed
methods can be reduced significantly as compared with previously developed analytical procedures.
A numerical example demonstrates that the results obtained from the proposed method are in good
agreement with those determined from the FEM, but the proposed method takes less computational
time than FEM, illustrating the present method is efficient, convenient and accurate. It is also
shown through the numerical example that a multi-step non-uniform rod carrying several
concentrated elements may be treated as a one-step non-uniform rod with continuously distributed
torsional stiffness and mass polar moment of inertia for free vibration analysis.
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